Cyclization of 3-Fluorophenol and 3,3-Dimethylacrylic Acid: A Structure Correction

Frances Shawcross and Howard Sard*

Organix, Inc., 65 Cummings Park, Woburn, MA 01801, USA Received March 15, 1995

Reaction of 3-fluorophenol and 3,3-dimethylacrylic acid in methanesulfonic acid at 90° gives predominantly 5-fluoro-2,2-dimethylchroman-4-one, not the 7-fluoro isomer as reported [1].

J. Heterocyclic Chem., 32, 1393 (1995).

We recently required a quantity of 7-fluoro-2,2-dimethylchroman-4-one (1). Two routes to this compound have been reported. A one step procedure to 1 [1] involves cyclization of 3-fluorophenol and 3,3-dimethylacrylic acid in methanesulfonic acid (Scheme 1). An alternate method for preparation of 1 [2,3] also starts with 3-fluorophenol, and proceeds *via* intermediates 3 and 4 (Scheme 2). We initially examined the route shown in Scheme 1. Repetition of this procedure as described, however, affords instead a mixture of two isomeric compounds. The major product formed is 5-fluoro-2,2-dimethylchroman-4-one (2); only a trace amount of 1 is in fact produced under these conditions.

In 1990, a report appeared [1] claiming the synthesis of 7-fluoro-2,2-dimethylchroman-4-one (1), *via* 3-fluorophenol and 3,3-dimethylacrylic acid, as shown in Scheme 1.

Scheme 1

The product, 1, was reportedly obtained in 29% yield after chromatography. Mass spectral analysis of 1 showed a parent ion at m/e 194, as well as the base peak at m/e = 179 corresponding to the loss of one methyl group. No other spectral or analytical characterization for 1 was provided.

We repeated this reaction under identical conditions to those reported. The ¹H nmr analysis of the crude product obtained revealed what was subsequently shown to be a ca. 1:10 mixture of 1 and 2. Chromatography in 7:1 petroleum ether-ethyl acetate (the published column eluent) afforded a 47% yield of a product homogeneous on tlc in this eluent. However, the nmr spectrum of this product

revealed the same 1:10 mixture of 1 and 2 as seen in the crude material. Further tlc analysis using multiple elution in a ternary system of pentane, methylene chloride, and diethyl ether clearly showed that two compounds were present. Flash chromatography in this eluent cleanly separated pure 2 (21% yield) as the faster moving spot. In addition, a 7% yield of material was isolated which was still a ca. 1:1 mixture of 1 and 2.

In order to secure an authentic sample of pure 1 for comparison, we then repeated the synthetic method for the synthesis of 1 shown in Scheme 2.

Scheme 2

The requisite intermediate 4'-fluoro-2'-hydroxyaceto-phenone (4) was prepared as reported [3]. 3-Fluorophenol was acetylated to provide 3-fluorophenyl acetate (3). Fries rearrangement of 3 was carried out in aluminum chloride at 160° . The 1 H nmr spectrum of 4 (see Experimental) confirmed the assigned structure, as in particular the doublet of doublets present at δ 7.70 (J = 5, 9 Hz) could be conclusively assigned to H_{6} ($J_{5.6}$ = 9; $J_{6.F}$ = 5) [4].

The intermediate acetophenone 4 was then converted to 1 under conditions similar to those reported (acetone, pyrrolidine, methanol) [2]. The nmr absorbances for the sample of pure 1 obtained in this fashion correspond exactly with the peaks from the minor component of the reaction product from Scheme 1.

A side-by-side comparison of the nmr data for 1 and 2 leave no doubt that these structural assignments are

Table	1

	H ₅	H_6	H_7	H_8	J _{5,6}	J _{6,7}	J _{6,8}	J _{7,8}	J _{5,F}	$J_{6,F}$	$J_{7,F}$	$J_{8,F}$
1 2	7.88	6.69 6.85	_ 7.26	6.62 6.79	8.6	 8.4	2.4 2.6	 9.0	6.7	8.6 8.4	 [a]	10.0 0.0

[a] This coupling constant could not be determined.

correct (Table 1).

All of the chemical shift data observed for 1 and 2 are in close agreement with calculated values [5]. In particular, the absorbance at δ 7.88 can only be assigned to H₅ of 1. The magnitude of the H-F coupling constants observed is also within the ranges reported [6].

The mass spectral data obtained for our samples of 1 and 2 as well as those reported for 1 [1] are presented below in Table 2.

Table 2

	M+	Other Peaks (%)
1	194 (39)	179 (100), 139 (82), 138 (45), 110 (41)
2	194 (67)	179 (100), 152 (18), 151 (20), 137 (23), 123 (17), 109 (28)
1 (reported [1])	194 (25)	179 (100), 152 (14), 109 (27)

The fragmentation patterns observed for our samples of 1 and 2 are similar, as both give a prominent parent ion, and a base peak corresponding to loss of one methyl group. Subsequent fragmentation is also similar, however 1 does not show a peak at m/e = 152, whereas 2 does. The data reported for 1 [1] more closely correspond to those we obtained for 2, further substantiating the structural assignments.

The effect of modifying the temperature of the methanesulfonic acid reaction to form 1 and 2 was briefly studied to see whether the isomer ratio could be influenced. Although the reaction proceeded more slowly at lower temperatures, by the the ratio of 1 to 2 appeared similar when the reaction was carried out at either 25° or 60°.

The cyclization which we have observed to give predominantly 2 does not appear to follow precedent for similar cyclizations. For example, 4-(3-fluorophenyl)butyric acid in polyphosphoric acid gives a 70% yield of 6-fluorotetralone; no mention of formation of 8-fluorotetralone (cyclization *ortho* to the fluorine) is made [7].

EXPERIMENTAL

Melting points were determined on a Gallenkamp apparatus, and are uncorrected. Infrared spectra were measured on a Perkin-Elmer 137. Proton nuclear magnetic resonance spectra were recorded at 100 MHz on a Bruker WP 100SY, or at 400

MHz on a Varian XL400. Coupling constants are measured in hertz. Elemental analyses were performed by Atlantic Microlab. Thin-layer chromatography was carried out on Baker Si 250F plates. Visualization was accomplished with ultraviolet exposure or treatment with phosphomolybdic acid. Flash chromatography was carried out on Baker silica gel $(40 \, \mu M)$.

7-Fluoro-2,2-dimethylchroman-4-one (1) and 5-Fluoro-2,2-dimethylchroman-4-one (2).

A mixture of 71.0 g (0.709 mole) of 3,3-dimethylacrylic acid and 20.0 g (0.178 mole) of 3-fluorophenol in 400 ml of methanesulfonic acid was heated at 90-95° for 20 hours. After being cooled to 25°, the reaction mixture was poured into 600 ml of ice and 600 ml of water. The aqueous layer was extracted with 3 x 350 ml of ether. The combined organic phase was washed with 3 x 150 ml of water, 4 x 180 ml of cold 1 N sodium hydroxide, 2 x 200 ml of water, and 1 x 250 ml of saturated sodium chloride solution. The ether layer was dried (magnesium sulfate) and evaporated. The oil that resulted was pumped on at high vacuum for 2 days with stirring to afford 48.63 g of a red-brown oil. The ¹H nmr analysis of this material showed a prominent singlet at $\delta = 2.61$ ppm (H₃ of 2) as well as a much smaller singlet at $\delta =$ 2.69 ppm (H₃ of 1); the ratio was about 10:1. A major spot at $R_f = 0.32$ (7:1 petroleum ether:ethyl acetate) was evident. A 4.0 g sample of the crude product was purified by flash chromatography on 120 g of silica gel, elution with 7:1 petroleum ether:ethyl acetate. Pure fractions were combined to afford 1.35 g (47%) of a ca. 1:10 mixture (by nmr) of 1 and 2.

This material was repurified by flash chromatography on 140 g of silica gel, elution with 3% methylene chloride and 3% ether in pentane, followed by 4% methylene chloride and 4% ether in pentane. Pure 2 eluted first, and the combined fractions gave 0.587 g of 2 as a pink solid, mp 47-49° (21%). Later fractions gave 0.162 g (6%) of a solid which was about 93% pure 2 by nmr. Subsequent fractions afforded 0.207 g (7%) of a yellow oil which by nmr was about 55% 2 and 45% 1.

Pure 2 had ir (potassium bromide): 1755 cm⁻¹ [9]; ¹H nmr (400 MHz, deuteriochloroform): δ 7.24-7.28 (m, 1H), 6.85 (dt, 1H, J = 2.6, 8.4), 6.79 (dd, 1H, J = 2.6, 9.0), 2.62 (s, 2H), 1.34 (s, 6H); ms (electron impact, 70 electron volts): m/z 194 (67), 179 (M⁺-CH₃, 100).

Anal. Calcd. for $C_{11}H_{11}FO_2$: C, 68.03; H, 5.71. Found: C, 68.21; H, 5.76.

The combined later fractions which were comprised of roughly equal amounts of 1 and 2 displayed the following $^1\mathrm{H}$ nmr spectrum (100 MHz, deuteriochloroform): δ 7.81-8.00 (m, 1H, C5-H of 1), 7.1-7.3 (m, 1H, C7-H of 2), 6.5-7.0 (m, 4H, C6-H and C8-H of 1 and 2), 2.70 (s, 2H, CH2 of 1), 2.63 (s, 2H, CH2 of 2), 1.46 (s, 6H, CH3 of 1), 1.35 (s, 6H, CH3 of 2). Thin-layer chromatography (88% pentane, 6% ether, 6% methylene chloride, three elutions) gave: for 1 R_f = 0.37; for 2 R_f = 0.43.

3-Fluorophenyl Acetate (3).

The published procedure [3] was followed to afford 3 in 92% yield as a clear oil; 1H nmr (100 MHz, deuteriochloroform): δ 7.1-7.5 (m, 1H, C₅-H), 6.7-7.0 (m, 3H, C_{2,4,6}-H); 2.30 (s, 3H, CH₃).

4'-Fluoro-2'-hydroxyacetophenone (4).

The published procedure [3] was followed to give 4 in 93% yield as an oil (lit [3] mp 24°); 1 H nmr (100 MHz, deuteriochloroform): δ 12.5 (apparent doublet, 1H, OH), 7.70 (dd, 1H, J = 5, 9, C₆-H), 6.5-6.8 (m, 2H, C_{3.5}-H); 2.62 (s, 3H, CH₃).

7-Fluoro-2,2-dimethylchroman-4-one (1).

The procedure for the conversion of 5'-fluoro-2'-hydroxyace-tophenone to 6-fluoro-2,2-dimethylchroman-4-one [8] was followed. A solution of 4 (6.55 g, 0.0425 mole), acetone (3.80 g, 0.0654 mole), and pyrrolidine (4.6 g, 0.0647 mole) in 165 ml of methanol was stirred at 25° overnight. The next day the reaction mixture was concentrated to an orange oil. One fourth of this oil was purified by flash chromatography on silica gel (elution with 25% methylene chloride/hexanes). Pure fractions were combined and concentrated to afford 1.18 g (57%) of 1 as a white solid, mp 45-46° (lit [2] oil); ir (potassium bromide): 1675 cm⁻¹; ¹H nmr (400 MHz, deuteriochloroform): δ 7.88 (dd, 1H, J = 6.7, 8.6), 6.69 (dt, 1H, J = 2.4, 8.6), 6.62 (dd, 1H, J = 2.4, 10.0), 2.71 (s, 2H), 1.46 (s, 6H); ms: (electron impact, 70 electron volts) m/z 194 (39), 179 (M+-CH₃, 100).

Anal. Calcd. for $C_{11}H_{11}FO_2$: C, 68.03; H, 5.71. Found: C, 67.90; H, 5.79.

Acknowledgements.

We thank Mr. Virgil Styles of Burroughs Wellcome Co. for bringing this problem to our attention.

REFERENCES AND NOTES

- [1] F. Kimisch, D. Arlt, H.-J. Santel, K. Luerssen, and R. R. Schmidt, European Patent Application EP 400,403 (1990); *Chem. Abstr.*, 114, 164000y (1991).
- [2] C. A. Lipinski, European Patent Application EP 230,379 (1987); Chem. Abstr., 108, 75224h (1988).
- [3] R. Henning, R. Lattrell, H. J. Gerhards, and M. Leven, J. Med. Chem., 30, 814 (1987).
- [4] The isomeric 2'-fluoro-6'-hydroxyacetophenone (which would lead to 2) could not have been formed in place of 4, since in 2'-fluoro-6'-hydroxyacetophenone the furthest downfield proton would be para to the carbonyl and would be coupled to two ortho protons as well as to a meta-oriented fluorine.
- [5] L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edition, Pergammon Press, Oxford, 1969, p 202.
 - [6] Reference 5, p 349.
 - [7] W. M. Owton and M. Brunaus, Synth. Commun., 21, 981 (1991).
- [8] S. P. Brown, A. L. Cooper, J. L. Longridge, J. J. Morris, and J. Preston, British Patent GB 2,227,744 (1990); *Chem. Abstr.*, 114, 142290r (1991).
- [9] The very low frequency for the carbonyl of 5 can be explained by the close proximity of the adjacent fluorine atom (see L. J. Bellamy, The Infrared Spectra of Complex Molecules, 2nd edition, Chapman and Hall, New York, 1980, p 154 for a similar example).